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Abstract

The paper presents efficient methods for determining the modified modal parameters (natural frequencies and mode

shapes) in a structural dynamic modification analysis when structural modifications are relatively large. Based on the

developed theory that can provide an exact relationship between the modifications of structural parameters (stiffness and

mass) and the associated modal parameters, an efficient iterative computational procedure is proposed for determining the

modified eigenvalues and the corresponding eigenvectors for complex structural systems. A high order approximation

approach is further presented from the exact relationship and compared with the existing first-order approximation

approach and the proposed iterative procedure. From the results for the given numerical example, it is shown that even in

the cases with a large modification of structural parameters the proposed iterative procedure can provide exact predictions

of the modified modal parameters after only a few iterations, and the high order approximation approach can give

excellent estimates. The computation of the modified modal parameters does not require the knowledge of the original or

modified structural parameters, and only a limited knowledge of the original modal data may be sufficient in a dynamic

reanalysis for complex structures.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Structural dynamic modification (SDM) techniques are very useful for rapidly analysing and applying the
effect of structural changes on the dynamic response of structures. That is, given changes in structural
parameters, such as stiffness or mass, SDM techniques can efficiently determine the corresponding changes in
modal parameters, such as natural frequencies and mode shapes, without solving the generalised eigenvalue
problem for the modified dynamic system. Therefore, SDM techniques, which often incorporate finite-element
analysis techniques, can greatly reduce the computational effort and increase the efficiency of reanalysis
during a structural optimisation process, especially in the cases where complex mechanical and structural
systems are considered.

There are various SDM techniques available for the dynamic reanalyses of a structural system, such as
sensitivity analyses based on eigenvalue and eigenvector derivatives [1,2] and Rayleigh quotient iteration [3].
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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However, the efficiency of sensitivity analysis methods is limited because these methods are complicated and
may be only suitable for small modifications of structural parameters [4]. It may be difficult to determine some
high-frequency modes using Rayleigh quotient iteration because the predictions of those modes exceeded the
limit bound of the Rayleigh quotient [2].

It should be pointed out that the first-order sensitivity analysis techniques and the truncated Taylor’s
expansion approximation approaches often used for estimating the modified modal parameters may perform
properly when the changes in structural parameters from the initial model to the modified model are small.
However, for the cases with relatively large modifications of structural parameters, the first order or the
truncated Taylor’s expansion approximations may be inaccurate. To avoid these shortcomings, a perturbation
theory was developed [5], which can provide an exact relationship between the modifications of structural
parameters and the associated modal parameters and can be applied to model updating and inverse structural
damage identification [6,7]. Here, based on the developed perturbation theory, an efficient iterative
computational procedure is proposed to provide exact predictions of the natural frequencies and the
corresponding mode shapes for the modified dynamic system modelled with a large number of degrees of
freedom (DOF). A high order approximation approach is also presented without iterative procedures
required, which can give excellent estimates of the modified modal parameters. The results of a numerical
example show that the iterative procedure presented here converges quickly for evaluating the modified modal
parameters and finally gives the exact solution even when structural modifications are large. The proposed
computational techniques successfully avoid adopting Taylor series expansion procedure and then the
derivatives of modal parameters are not needed. Only limited information on the analytical or experimental
modal data of the original structure is required in calculations. Therefore, the proposed methods are well
suited for complex structures with a large number of DOFs, especially for the cases where the knowledge of
the modified structural parameters is not available and the modified modal data cannot be obtained by solving
the generalised eigenvalue problem.

2. Theory

2.1. Basic equations for SDM analyses

Assume that modal parameters li and /i are the ith eigenvalue and the corresponding mass normalised
eigenvector of the original dynamic system with structural parameters of the global stiffness matrix K and the
global mass matrix M, where i ranges from 1 to N and N represents the total number of DOFs for the system.
Then, the ith eigenvalue l�i and the corresponding eigenvector /�i for the modified system can be given by

l�i ¼ li þ Dli, (1)

/�i ¼ /i þ D/i, (2)

where Dli and D/i represent the modifications of ith eigenvalue and corresponding eigenvector, which are
caused by the modifications of stiffness matrix DK and/or mass matrix DM. Suppose that the modified
eigenvector /�i is normalised with respect to the original mass matrix in the form

/T
i M/�i ¼ 1. (3)

Here the value of /T
i M/�i is assumed to be non-zero. Consequently, the modification of eigenvector D/i can

be expressed as a linear combination of the independent original eigenvectors except the corresponding
original one since the original stiffness and mass matrices are assumed to be symmetric [5], and is rewritten
here as

D/i ¼
XN

k¼1;kai

Cik/k ; /�i ¼ /i þ
XN

k¼1;kai

Cik/k, (4)

where Cik are mode participation factors. It can be shown that Eq. (3) can be satisfied if the modified
eigenvectors are computed from Eq. (4) since the original eigenvectors are assumed to be mass normalised as
unity. Moreover, the orthogonality conditions of the modified mass matrix M* with respect to the modified
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eigenvector /�i can be given by

/�Ti M�/�i ¼ 1þ
X

mai

C2
im þ

X

m

X

l

CimCil/
T
mDM/l . (5)

Note that the obtained modified eigenvectors are usually not mass normalised as unit in this case. However,
the mass normalised eigenvectors for the modified structure could be obtained without requiring the
knowledge of the modified mass matrix.

Based on the above equations and considering the characteristic equations for the original and modified
systems, the general theory for dynamic systems with structural modifications, which can provide an exact
relationship between the modifications of structural parameters and the associated modal parameters, was
developed and given in the paper by Chen [5]. The developed theory is now utilised for a SDM analysis, and
the derived basic equations for determining the modification of eigenvalues Dli and the mode participation
factors Cik are rewritten here, respectively, as

Dli ¼
/T

i ðDK� liDMÞð/i þ D/iÞ

1þ /iDMð/i þ D/iÞ
, (6)

Cik ¼
/T

k ðDK� l�i DMÞ/i þ
PN

l¼1;lai;k/
T
k ðDK� l�i DMÞ/lCil

l�i � lk � /T
k ðDK� l�i DMÞ/k

. (7)

Note that the computation of the modified natural frequencies and the corresponding mode shapes through
the general equations, Eqs. (6) and (7), does not require the knowledge of the stiffness matrix and mass matrix
of the original or modified system, which is very useful for the cases where structural parameters of the
original and modified systems are not available. Consequently, the modal parameters of the modified system
can be determined, provided that the natural frequencies and mode shapes of the original system obtained
either analytically or experimentally, together with the modifications of structural parameters DK and DM, are
known.

2.2. Iterative computational procedure

An iterative procedure for calculating the modification of eigenvalues Dli and the mode participation
factors Cik is required because the two general equations, Eqs. (6) and (7), are coupled. An improved
computational procedure is now developed for the cases of complex structures where a large number of DOFs
may be present in order to efficiently determine the modal parameters for the modified dynamic system. To
simplify the computation process, sensitivity coefficients associated with the original eigenvectors and the
modifications of structural parameters, aK

ki and aM
ki , are defined in general forms as

aK
ki ¼ /T

kDK/i; aM
ki ¼ /T

kDM/i. (8)

Note that the sensitivity coefficients aK
ki and aM

ki can be determined in the case where only the elements of the
original eigenvectors corresponding to the sites of the modifications of structural parameters are available. Eq.
(6) for calculating the modification of eigenvalues, by utilising Eqs. (4) and (8), now can be rewritten as
follows:

Dli ¼
ðaK

ii � lia
M
ii Þ þ

PN
k¼1;kaiða

K
ki � lia

M
ki ÞCik

1þ aM
ii þ

PN
k¼1;kaia

M
ki Cik

. (9)

Similarly, from Eq. (7) the mode participation factors Cik, which are utilised for calculating the modification
of eigenvectors, can be obtained from

Cik ¼
ðaK

ki � l�i aM
ki Þ þ

PN
l¼1;lai;kða

K
kl � l�i aM

kl ÞCil

ðl�i � lkÞ � ða
K
kk � l�i aM

kkÞ
. (10)

The preceding formulation forms a basis for an iterative solution procedure. The procedure is initiated by
assuming that the initial mode participation factors Cik (where k6¼i) are equal to zero, that is C

ð0Þ
ik ¼ 0.
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Physically, this implies that the initial modified eigenvalues are obtained from the assumption that the
modified eigenvectors are identical to the original ones. A first approximation for the modification of
eigenvalues is then calculated from Eq. (9). The next approximation for the mode participation factors, after
substituting the currently obtained modified eigenvalue into Eq. (10), is then evaluated. The approximations
for the modification of eigenvalues and the mode participation factors can be further improved by repeating
the same process as described above. In general, the nth approximation for the modification of eigenvalues
DlðnÞi , by rewriting Eq. (9), can be expressed as

DlðnÞi ¼
ðaK

ii � lia
M
ii Þ þ

PN
k¼1;kaiða

K
ki � lia

M
ki ÞC

ðn�1Þ
ik

1þ aM
ii þ

PN
k¼1;kaia

M
ki C

ðn�1Þ
ik

(11)

and the nth approximation for the mode participation factors C
ðnÞ
ik , by adopting currently obtained l�ðnÞi ¼

li þ DlðnÞi and rewriting Eq. (10), can be evaluated from

C
ðnÞ
ik ¼
ðaK

ki � l�ðnÞi aM
ki Þ þ

Pk�1
l¼1;laiða

K
kl � l�ðnÞi aM

kl ÞC
ðnÞ
il þ

PN
l¼kþ1;laiða

K
kl � l�ðnÞi aM

kl ÞC
ðn�1Þ
il

ðl�ðnÞi � lkÞ � ða
K
kk � l�ðnÞi aM

kkÞ
. (12)

Note that C
ðnÞ
il , where lok and k ranges from 1 to N in the numerator of Eq. (12), are already obtained when

C
ðnÞ
ik are being calculated, as shown in Eq. (12), since C

ðnÞ
ik for the ith modified eigenvector are consecutively

computed from C
ðnÞ
il to C

ðnÞ
iN . Also, in the case when a significant number of DOFs are adopted for modelling

the dynamic system, a subset of original eigenvectors, NC, may be utilised to replace the total number of all
eigenvectors of the original system, N, in order to avoid the difficulty in computing all eigenvectors of the
original system.

The above recursive process for evaluating the approximations for l�i and Cik is repeated until the following
convergence criterion, where e is the convergence tolerance, is satisfied:

dli ¼
jDlðnÞi � Dlðn�1Þi j

jli þ DlðnÞi j
� �. (13)

The modified eigenvectors then can be calculated using the obtained Cik from Eqs. (4), and therefore Eq. 3 is
satisfied. The pairing of the eigenmodes for the original and the modified structural dynamic systems can be
checked using the Modal Assurance Criterion (MAC) factors, defined as follows:

MACðk; iÞ ¼
j/T

k /�i j
2

j/T
k /kjj/

�T
i /�i j

. (14)

The highest MAC(k, i) factors indicate the most likely pairings of the original mode /k and the modified
mode /�i .
2.3. High order approximation

Based on the derived basic equations, approximate approaches are proposed for estimating the eigenvalues
and the corresponding eigenvectors for the modified dynamic system to avoid iterative computational
procedures. First, assume that no change of eigenvectors exists between the modified and original systems,
that is, D/i ¼ 0. From Eq. (6), the first-order approximation of the modified eigenvalues l0i can be obtained:

l0i ¼
li þ /T

i DK/i

1þ /T
i DM/i

. (15)

Note that the first-order approximation is identical to the Rayleigh quotient approximation to the modified
eigenvalues based on the original eigenvectors /i, and is also equivalent to the first approximation from
Eq. (11), where n ¼ 1, in the proposed iterative procedure.

Furthermore, replace l�i in Eq. (7) with the first-order approximation l0i given by Eq. (15) and ignore the
mode participation factors in the numerator in Eq. (7), i.e. Cil ¼ 0. Considering Eq. (15), then the estimate of



ARTICLE IN PRESS
H.-P. Chen / Journal of Sound and Vibration 298 (2006) 462–470466
mode participation factors C0ik can be expressed as

C0ik ¼
/T

k ðDK � l0iDMÞ/i

ðl0i � l0kÞð1þ /T
kDM/kÞ

. (16)

Consequently, the estimates for the modification of eigenvectors and modified eigenvectors can be
calculated from Eq. (4). Substituting the obtained modification of eigenvectors into Eq. (6), a higher order
approximation for the modification of eigenvalues can be given by

Dli ¼
/T

i ðDK� liDMÞ/i þ
PN

k¼1;kaiC
0
ik/

T
k ðDK� liDMÞ/i

1þ /T
i DM/i þ

PN
k¼1;kaiC

0
ik/

T
kDM/i

. (17)

Note that the estimate of mode participation factors C0ik can be directly determined from Eq. (16), provided
that the original modal data, li and /i, and the modifications of structural parameters, DK and DM, are
known. From the sensitivity coefficients defined in Eq. (8), Eqs. (16) and (17) can be rewritten here as,
respectively:

C0ik ¼
aK

ki � l0iaM
ki

ðl0i � l0kÞð1þ aM
kkÞ

, (18)

Dli ¼
ðaK

ii � lia
M
ii Þ þ

PN
k¼1;kaiC

0
ikða

K
ki � lia

M
ki Þ

1þ aM
ii þ

PN
k¼1;kaiC

0
ikaM

ki

. (19)

Then, the high order approximations for the modified eigenvalues and the corresponding eigenvectors can
be calculated from Eqs. (1) and (4), respectively.

3. Numerical example

A rectangular thin plate model shown in Fig. 1 is utilised to demonstrate the effectiveness of the proposed
techniques for calculating the modal data for the modified dynamic system by introducing various levels of
structural modifications and comparing different computational approaches. The rectangular aluminium plate
is 1000mm long, 600mm wide and 10mm thick, with material properties of Young’s modulus
E ¼ 6.89� 1010N/m2, Poisson’s ratio u ¼ 0:30 and density r ¼ 2796 kg/m3. The thin plate is modelled as a
plate bending problem in a free–free boundary condition. A finite-element analysis is performed for the plate
model using eight-node isoparametric plate bending elements with three DOFs for each node. The full plate
model contains 60 elements, 213 nodes and 639 DOFs, and is reduced to 15 master DOFs by using Guyan
reduction [8] as shown in Fig. 1 and marked with (K).

The convergence performance of the proposed iterative procedure for determining the modified modal data
is demonstrated in Table 1, where the reduced model of 15 master DOFs is considered. In this case, the
thickness of the plate model is modified by an increase of 50% to a thickness of 15mm over the shaded areas
1000mm

60
0m

m

Master nodes for reduced model

Fig. 1. Thin plate bending model problem.
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Table 1

Predicted natural frequencies (Hz) at different iteration numbers, reduced model adopted and thickness increased locally by 50%

Original Modified

(exact)

Exact Do First iteration Second iteration Sixth iteration MAC

diagonal value

Predicted

o
Predicted

Do
Predicted

o
Predicted

Do
Predicted

o
Predicted

Do

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8832

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8836

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9986

51.6344 68.7107 17.0763 71.5041 19.8697 68.9640 17.3296 68.7107 17.0763 0.9950

52.8160 76.5300 23.7139 76.7156 23.8996 76.5299 23.7139 76.5300 23.7139 0.9996

121.314 154.710 33.3958 155.349 34.0344 154.766 33.4520 154.710 33.3958 0.9849

146.979 179.721 32.7425 180.674 33.6956 179.888 32.9091 179.721 32.7425 0.9945

154.525 220.730 66.2054 219.987 65.4620 220.844 66.3189 220.730 66.2054 0.9689

196.020 260.571 64.5510 262.487 66.4669 260.445 64.4247 260.571 64.5510 0.9526

229.281 293.331 64.0498 293.308 64.0267 293.331 64.0498 293.331 64.0498 0.9998

291.120 335.422 44.3020 334.314 43.1935 335.241 44.1208 335.422 44.3020 0.9723

342.325 460.052 117.726 455.787 113.462 459.491 117.166 460.052 117.726 0.9585

431.170 556.723 125.553 540.861 109.691 557.363 126.193 556.723 125.553 0.9573

455.201 577.831 122.630 563.201 108.000 578.303 123.102 577.831 122.630 0.9591

722.647 915.551 192.904 892.587 169.940 914.016 191.369 915.551 192.904 0.9691

Sdli
a 3.62E�01 3.88E�02 1.07E�06

aSdli represents the sum of dli defined in Eq. (13) over the total number of eigenvalues considered.
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shown in Fig. 1. Therefore, changes in both stiffness and mass matrices are present. The natural frequency
estimates of all 15 modes for the reduced model, including three rigid body modes, through a succession of
iterations are listed in Table 1 along with the exact solution. It can be seen that the proposed iterative
procedure achieves convergence after only a few iterations, and the results given at the first iteration are
identical to those from the Rayleigh quotient approximation. The parings of the original modes and the
modified modes are assured by using MAC values as defined in Eq. (14). The MAC diagonal values given in
Table 1 show that the modified modes match the corresponding original modes very well.

Different computational approaches are now utilised to predict the modal data for the modified system.
Here, the reduced model of 15 master DOFs is considered and the structural modification with local changes
in plate thickness is introduced as given earlier. From the results shown in Table 2, the iterative procedure can
give the exact values of the modified natural frequencies and the high order approximation approach can give
excellent predictions, even for the case where relatively large structural modifications exist. The values of the
modified natural frequencies obtained from the high order approximation approach are much improved,
compared with the results obtained using the first-order approximation approach.

The results in Table 3 demonstrate the effectiveness of different computational approaches with respect to
various levels of structural modifications. It is assumed that the thin plate model is modified by increasing the
thickness over the shaded areas by 10%, 40% and 100%, respectively. Note that some coefficients of the
stiffness and mass matrices could be increased by factors of approximately 700% and 100%, respectively, in
the case with the thickness increased by 100%. The results indicate that the proposed iterative procedure can
give exact predictions for the modified natural frequencies, even in the case where significant structural
modifications exist. The high order approximation approach can provide satisfactory estimates for all cases,
while the first-order approximation approach can give reasonable estimates only in the case where relatively
small structural modifications exist.

In order to investigate the effect of noise in the original modal data on the predictions of the modified
natural frequencies, random errors of up to 1% in the eigenvalues of the original system and up to 20% in its
eigenvectors are introduced, resulting in the values shown in Table 4. The iterative procedure is utilised and
the plate model is modified by an increase of 50% in thickness over the shaded areas. From the results, it can
be seen that the proposed technique is insensitive to random errors existing in the original modal data.
Therefore, satisfactory predictions of the modified modal parameters could be obtained from the modal data



ARTICLE IN PRESS

Table 3

Predicted natural frequencies (Hz) for various local thickness modifications, reduced model adopted and different computational

approaches utilised

Thickness increased by 10% Thickness increased by 40% Thickness increased by 100%

Modified

(exact) o
Exact/

iterative

Do

First

order

Do

High

order

Do

Modified

(exact) o
Exact/

iterative

Do

First

order

Do

High

order

Do

Modified

(exact) o
Exact/

iterative

Do

First-

order

Do

High

order

Do

0.0000 — — — 0.0000 — — — 0.0000 — — —

0.0000 — — — 0.0000 — — — 0.0000 — — —

0.0000 — — — 0.0000 — — — 0.0000 — — —

55.172 3.538 3.913 3.543 65.333 13.698 18.569 13.928 86.258 34.623 55.974 36.198

57.163 4.347 4.365 4.347 71.436 18.620 18.945 18.620 103.56 50.743 53.303 50.741

128.05 6.730 7.021 6.731 148.07 26.756 30.775 26.819 187.33 66.013 85.597 66.503

152.64 5.660 5.910 5.665 172.27 25.295 29.273 25.462 222.61 75.629 98.792 75.825

169.38 14.859 15.847 14.860 209.17 54.641 68.274 54.734 265.66 111.14 178.11 111.19

211.45 15.425 16.511 15.422 250.30 54.281 69.841 54.149 294.34 98.323 172.25 97.761

241.24 11.962 11.848 11.962 279.65 50.364 48.906 50.364 366.23 136.95 130.53 136.95

300.11 8.986 9.945 8.976 326.78 35.663 50.504 35.387 378.63 87.505 167.12 88.092

364.46 22.136 23.193 22.131 435.65 93.321 109.61 92.808 580.51 238.18 326.38 229.14

455.40 24.230 24.480 24.245 531.27 100.10 104.87 100.98 676.58 245.41 275.57 256.13

479.24 24.036 24.896 24.048 553.13 97.928 112.29 98.564 698.24 243.04 325.99 249.16

759.99 37.342 39.130 37.313 876.92 154.27 185.62 153.04 1092.0 369.31 565.56 364.77

Table 2

Predicted natural frequencies (Hz) from different computational approaches, reduced model adopted and thickness increased locally by

50%

Modified

(exact)

Exact

DoE

First ordera High ordera Iterative procedurea

Predicted

o
Predicted

DoP
do=DoE ð%Þ Predicted

o
Predicted

DoP
do=DoE ð%Þ Predicted

o
Predicted

DoP
do=DoE ð%Þ

0.0000 — 0.0000 — — 0.0000 — — 0.0000 — —

0.0000 — 0.0000 — — 0.0000 — — 0.0000 — —

0.0000 — 0.0000 — — 0.0000 — — 0.0000 — —

68.7107 17.0763 71.5041 19.8697 16.4 69.0996 17.4652 2.3 68.7107 17.0763 0.0

76.5300 23.7139 76.7156 23.8996 0.8 76.5299 23.7139 0.0 76.5300 23.7139 0.0

154.710 33.3958 155.349 34.0344 1.9 154.820 33.5050 0.3 154.710 33.3958 0.0

179.721 32.7425 180.674 33.6956 2.9 179.980 33.0010 0.8 179.721 32.7425 0.0

220.730 66.2054 219.987 65.4620 �1.1 220.888 66.3631 0.2 220.730 66.2054 0.0

260.571 64.5510 262.487 66.4669 3.0 260.345 64.3251 �0.3 260.571 64.5510 0.0

293.331 64.0498 293.308 64.0267 0.0 293.331 64.0498 0.0 293.331 64.0498 0.0

335.422 44.3020 334.314 43.1935 �2.5 335.050 43.9297 �0.8 335.422 44.3020 0.0

460.052 117.726 455.787 113.462 �3.6 458.998 116.673 �0.9 460.052 117.726 0.0

556.723 125.553 540.861 109.691 �12.6 558.379 127.209 1.3 556.723 125.553 0.0

577.831 122.630 563.201 108.000 �11.9 578.993 123.792 0.9 577.831 122.630 0.0

915.551 192.904 892.587 169.940 �11.9 913.501 190.855 �1.1 915.551 192.904 0.0

ado ¼ DoP � DoE .
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of the original system with a certain level of noise, which may be measured from laboratory or full scale model
testing, if the proposed techniques are adopted.

The effectiveness of the proposed iterative procedure for determining the modified modal data with respect
to the number of original eigenvectors adopted in calculations is now investigated, as shown in Table 5. A full
finite-element analysis model with 639 DOFs is considered, and again it is assumed that structural parameters
of the plate model are modified by an increase of 50% in thickness over the shaded areas. The natural
frequency estimates of the first 15 modes including three rigid body modes are presented. It is found that only
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Table 4

Predicted natural frequencies (Hz) for various random noise levels in original eigenvetors, reduced model adopted and thickness increased

locally by 50%

Original (exact) Modified (exact) Random noise level in original eigenvetors

At 1% At 2% At 5% At 10% At 20%

0.0000 0.0000 — — — — —

0.0000 0.0000 — — — — —

0.0000 0.0000 — — — — —

51.6344 68.7107 68.7358 68.7648 68.8753 69.1338 69.9373

52.8160 76.5300 76.5085 76.4913 76.4659 76.5144 77.0455

121.314 154.710 154.770 154.831 155.022 155.368 156.152

146.979 179.721 179.711 179.702 179.678 179.653 179.652

154.525 220.730 220.731 220.734 220.759 220.855 221.251

196.020 260.571 260.401 260.234 259.750 259.000 257.712

229.281 293.331 293.333 293.336 293.344 293.364 293.437

291.120 335.422 335.432 335.441 335.462 335.475 335.431

342.325 460.052 460.173 460.288 460.598 460.998 461.403

431.170 556.723 557.083 557.440 558.520 560.401 564.630

455.201 577.831 577.769 577.705 577.494 577.083 576.055

722.647 915.551 915.530 915.506 915.407 915.157 914.340

Table 5

Predicted natural frequencies (Hz) from different number of original eigenvectors adopted, full model adopted and thickness increased

locally by 50%

Original Modified (exact) Number of original eigenvectors adopted, NC

NC ¼ 30 NC ¼ 60 NC ¼ 90 NC ¼ 120 MAC diagonal value

0.0000 0.0000 — — — — 0.9963

0.0000 0.0000 — — — — 0.8553

0.0000 0.0000 — — — — 1.0000

51.5320 68.5281 69.0971 68.7339 68.7041 68.6660 0.9932

52.7087 76.2357 76.8165 76.4922 76.4116 76.3907 0.9919

119.990 152.349 153.704 153.004 152.836 152.793 0.9696

143.471 175.263 177.860 175.687 175.548 175.506 0.9904

149.812 209.666 212.831 211.187 211.077 210.713 0.9611

187.990 243.071 247.193 244.753 244.670 244.294 0.9422

218.920 276.604 286.074 278.082 277.322 277.257 0.9684

267.536 307.647 313.012 309.104 308.742 308.601 0.9719

302.254 387.541 392.661 389.374 389.162 388.908 0.9416

361.768 442.721 457.486 445.820 444.650 444.392 0.9514

395.437 484.138 500.217 489.215 486.292 486.085 0.9468

431.549 483.933 533.826 487.899 485.039 484.790 0.8926
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a limited knowledge of the original eigenvectors is required. Even a total number of 60 original modes
(approximately 10% of all original modes) is sufficient to give good predictions of the modified natural
frequencies for the case with relatively large modifications of structural parameters. As expected, excellent
results can be obtained when 120 original modes (approximately 20% of all original modes) are adopted in the
calculations.
4. Conclusions

An improved iterative procedure is proposed for efficiently determining the eigenvalues and the
corresponding eigenvectors for a dynamic system with large modifications of structural parameters and a



ARTICLE IN PRESS
H.-P. Chen / Journal of Sound and Vibration 298 (2006) 462–470470
large number of DOFs present. A high order approximation approach is also presented without iterative
procedures involved. From the results for the given thin plate bending model problem, it has been shown that
the convergence of the proposed iterative procedure can be achieved rapidly, leading to exact solutions to
SDM analyses even in the cases where large structural modifications exist. Only a limited knowledge of
original modes is required to provide correct predictions of the modified modal parameters, and the
knowledge of the original or modified stiffness and mass matrices may not be needed. The proposed
techniques are insensitive to random errors existing in the original modal data, and therefore satisfactory
estimates for the modified modal parameters could be obtained from the original modal data that may be
measured in laboratory or full scale model testing in practice. Furthermore, it is found that the proposed
high order approximation approach can give good predictions of the modified modal parameters even in the
cases where relatively large modifications of structural parameters are present, whereas the first-order
approximation approaches may not be sufficient.
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